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Top-down extended meshing algorithm and its applications to Green’s tensor nano-optics
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We present a computational algorithm which speeds up Green’s tensor nano-optics calculations by means of
optimizing the mesh that represents the system we want to investigate. The algorithm automates the process of
creating a variable-size mesh that describes an arbitrary nanostructure. The total number of elements of this
mesh is smaller than that of a regular mesh representing the same structure, and thus the Green’s tensor
calculations can be performed faster. Precision, however, is kept at a similar level than for the regular mesh.
Typically, the algorithm yields a mesh that speeds up Green’s tensor calculations by a factor of 4, while giving
a maximum error in the field magnitude of about 5%. The speed-up factor makes it very suitable for otherwise
lengthy calculations, and the error should be acceptable for most applications.
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I. INTRODUCTION

Recent developments in measurement and fabrication
techniques have permitted an enormous advancement in the
field of nano-optics. Methods such as near-field scanning op-
tical microscopy (NSOM) [1] and surface-enhanced Raman
scattering (SERS) [2-4], applied to well-defined samples
prepared by, for example, electron beam lithography (EBL)
[5] or focused ion-beam etching (FIB) [6], have opened the
possibility to probe optical near-field magnitudes, like elec-
tric field or local optical density of states [7,8], with great
precision. We do not have, however, a practical theory that
satisfactorily explains all behaviors observed by such experi-
mental techniques. Apart from some highly idealized cases,
such as spheres, ellipsoids, or cylinders, it is, in general,
impossible to find analytical solutions to Maxwell’s equa-
tions for arbitrary nano-optical systems, and it usually be-
comes necessary to utilize numerical methods to make theo-
retical predictions or corroborate experimental results. A
wide variety of such methods have been developed: the
discrete-dipole  approximation (DDA) [9,10], Finite-
difference time domain (FDTD) [11,12], Multiple multipole
(MM) [13], and Green’s tensor (GT) [14,15], are some of the
most common; for a more complete overview, see, for ex-
ample, Ref. [16].

The Green’s tensor method is particularly interesting be-
cause of its adaptability and range of applications. Unlike the
other methods mentioned above, GT is based on the exact
solution for a propagating wave in a homogeneous back-
ground. The idea is to solve Helmholtz’s vector equation for
the given background, and then insert the scatterer or scat-
terers we want to investigate as a perturbation. The system is
divided into small pieces, usually cubes, in a process called
meshing, and each of those pieces is called a mesh element.
GT assumes that the field inside each mesh element is con-
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stant, adds all mesh elements to the background as a pertur-
bation, and then numerically solves the total system (back-
ground plus scatterers). The solution is exact in the sense that
it can be found to arbitrary precision.

The layered Green’s tensor (LGT) method [17,18] is a
generalization of the above scheme to a situation where the
background needs not be homogeneous, but is built up by a
stack of homogeneous layers. In this case, the reference sys-
tem is thus still translationally invariant in two of the coor-
dinate directions, but not in the third. It can therefore be
applied to many experimental systems, for example,
waveguides or nanoparticles on a substrate. The advantage of
LGT, in comparison to other methods, is that the perturbation
is the only part we have to discretize with a mesh since the
background is already accounted for in the exact solution of
Helmbholtz’s equation. This permits a good precision, and
also better speed than if we had to discretize the layers as
well.

Unfortunately, the mesh in GT calculations often consists
of a number of elements N so large that those calculations
are simply too slow to be practical. For instance, with our
FORTRAN implementation of GT and LGT, GT calculations of
a system with just N=10* with an allowed relative error of
1075, take about six hours per wavelength on a modern com-
puter (AMD 64-bit 3800+ GHz processor, 1 GB RAM),
while LGT calculations for the same system can take much
longer depending on the chosen amount of layers. Calcula-
tions of spectral properties will have to be repeated for dif-
ferent wavelengths, so for just 20 wavelengths it will take
5 days with GT, and more with LGT.

DDA tries to circumvent this time problem by solving the
system in Fourier space, which is a well-known method to
speed up the solution [19]. Unfortunately, this step requires
the background to be homogeneous and the mesh elements to
be of equal size. While in principle we can limit ourselves to
constant mesh sizes, the background in GT methods is in
general not homogeneous (LGT has by definition a hetero-
geneous background), so we cannot, in general, resort to this

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.75.046702

ALEGRET, KALL, AND JOHANSSON

way of speeding calculations up. Another choice would then
be to run these calculations within a set of parallel comput-
ers, but this solution is out of reach in many cases, as parallel
computing facilities are not widely available. Instead, our
goal was to optimize GT and LGT calculations so that they
would be feasible even on single-processor computers. We
therefore had to find a way to decrease the time it takes to
make GT or LGT calculations, without noticeably affecting
the precision of the results.

The next obvious choice to decrease calculation times is
to reduce the number of mesh elements N. There are a num-
ber of so-called adaptive mesh refinement (AMR) methods
[20,21] that try to find the optimum mesh by starting with a
coarse mesh, solving the system with the chosen numerical
method, estimating the error associated to each grid point
and creating a new mesh with more elements where the error
is larger, then repeating the process until the error is below a
specified threshold.

For the case at hand, there are two problems with the
AMR approach: first of all, one needs a good way of esti-
mating the error to be able to implement it; and second, it is
not a fast algorithm for calculation-heavy methods such as
GT: since each AMR iteration adds more elements to the
mesh that one has to solve with GT, it pays off to try to find
an algorithm that creates an optimized mesh from the start,
as we avoid all intermediate calculations to reach a final
mesh. Hence our source for a faster GT method lies else-
where.

There are two main obstacles in trying to find an optimum
meshing algorithm for GT calculations. First, as mentioned
above, GT assumes that the electric field is constant inside
each mesh element. If we decrease the number of elements,
then they will have to be larger in order to simulate the same
system, but if we make them too large, our assumption of a
magnitude being constant inside them will not be accurate
enough. Second, for purely geometrical reasons, large ele-
ments may not, in general, represent the shape of our nano-
structure well enough. If our mesh elements are cubic and we
want to represent a curved object, the discretization will pro-
duce a staircasing effect all along the curved surface. This
effect, of course, will be greater the larger the mesh elements
are.

Our solution to these problems is based on the observa-
tion that the geometrical effect is of more importance than
the effect of assuming a constant field inside the mesh ele-
ments. In other words, if the geometrical effect would not
exist, we could have larger mesh elements without compro-
mising the precision of the result. The reason that the geo-
metrical effect is larger is that the staircasing effect produces
pointy edges at the surface of the particles. Since electromag-
netic field concentrates around pointy edges, this effect in-
troduces a large error at or near the surface of a rounded
particle, so near-field calculations could be seriously af-
fected. This implies that we should create a finer mesh near
the surfaces of particles, and a coarser mesh in the bulk. In
this way, the near field will remain approximately the same,
while N will be reduced and thus the calculations will take
less time.

We present here an algorithm that solves the need for an
automated mesh generator for nano-optics calculations. We

PHYSICAL REVIEW E 75, 046702 (2007)

call it the “top-down extended meshing algorithm” (TEMA).
It takes a regular square or cubic mesh and transforms it into
a variable-size mesh suitable for nano-optics GT or LGT
simulations of arbitrary systems. TEMA greatly speeds up
the calculations without compromising the precision of the
result.

II. THEORETICAL BACKGROUND

Before looking at the TEMA method itself, we will give a
summary of the Green’s tensor method for nano-optics, a
step that is important in order to clarify some of the issues
that TEMA addresses. Further details can be obtained else-
where [14,15,17,18].

Consider an incident field E%(r,7), periodic in time,

E'(r,7) = E'(r)e”™", (1)

and propagating in a nonmagnetic background with permit-
tivity 5. We add a scattering system (a particle or collection
of particles) to the background, by means of introducing a
dielectric function e(r) that has the value corresponding to
the material of the scatterer(s) at the places where a scatterer
is present, and is equal to the background value €5 otherwise.
The GT method yields the optical properties of the total sys-
tem (background plus scatterers) when illuminated by the
incident field.

We start with the vectorial Helmholtz equation that de-
scribes the electric field of the total system, E(r):

V X V X E(r) — kje(r)E(r) = 0, (2)

where k is the vacuum wave number. By defining the func-
tion

A€e(r) = €(r) — €5 (3)
we may rewrite Eq. (2) as

V X V X E(r) — kjegE(r) = kA e(r)E(r). (4)

By assumption, E%(r) is a solution of the homogeneous
equivalent of Eq. (4):

V X V X Er) - kjezE(r) = 0. (5)

This equation may be used to define a Green’s tensor for
the background, G(r,r’), by introducing a point source at
r=r':

V XV XG(r,r') —k(Z)eBG(r,r’) =18(r-r’'). (6)

The explicit form of G(r,r’) for an homogeneous back-
ground is [15]
VV \ exp(ikR)
Grr')=\14+—|—, 7
(rr!) ( k2) 4mR @)
where k*>=kje; and R=|r-r'|.
Equations (4)—(6) yield the following expression for the
total field E(r):
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E(r)=E%r) + f dr'G(r,r’) - k(z)Ae(r’)E(r’), (8)
v

where V denotes the region in space where scatterers are
present. The equation has a singularity for r’=r, which can
be avoided by removing the singularity point from the inte-
gration volume and compensating the value of the integral
through a source dyadic L [15,22] that depends on the ge-
ometry of the excluded infinitesimal volume. Explicitly,

E(r)=E’r) + (f dr'G(r,r’) - k%Ae(r’)E(r’))

A
)
€p

-L (r), )
where V' is the original volume V minus an infinitesimal
volume around the singular point r'=r: [,y =limgy_ofy_sv-
This equation may be discretized in a way that becomes
useful for numerical calculations. We first subdivide (i.e.,
mesh) the volume V into N pieces, which we will assume to
be of cubic shape. The resulting mesh elements are centered
at positions {ry,...,ry}. The elements do not necessarily
have to be of the same size, so we will keep track of their
individual volumes as well: {V,,...,Vy}. For simplicity, we
introduce the subindex notation E;=E(r;), G;;=G(r;,r;), and
analogously for other quantities. Equation (9) becomes

N
0 2

J=Lj#i
Ae.
+M,- CAeE,~L- —E, (10)
€p
where
M,:f dr'G(r;r’") (11)
vi

is the self-interaction term [23], which must be calculated
explicitly due to the infinitesimal volume &V removed
around the singularity of the Green’s tensor.

To calculate M;, we should in principle evaluate Eq. (11).
However, M; is often a small quantity, so that we may cal-
culate it approximately, without incurring too large an error,
by assuming the volumes V; and 8V to be spherical. Namely,
we define an effective radius R; for each element i as fol-

lows:
3 13
R[ = (;TVI> 5 (12)

and we map our cubic mesh into a spherical one with ele-
ments of radii R;. For an integration volume V; consisting of
a spherical volume V; minus a spherical infinitesimal volume
SV removed from its center, we have [15]

2
M, = ﬁ[(l — ikogR;)exp(ikoR;) — 1]1. (13)
0

This approximation is of course optional and may be skipped
if rigorous results are desired.

PHYSICAL REVIEW E 75, 046702 (2007)

On the other hand, for 6V either cubic or spherical, we
have [22]

L 11 (14)
=3l

Equations (10)—(14) are the basic equations of the homo-
geneous Green’s tensor method.

Notice that Eq. (10) approximates the integral in Eq. (9)
by a discrete sum: the field at the center of each element
times the volume of that element. Thus the field inside each
individual mesh element is assumed to be constant. This is a
good approximation if the mesh element sides are much
smaller than the wavelength of the incoming field, so that the
field varies slowly inside all elements. Note, however, that
this size restriction only holds for the individual mesh ele-
ments. The scatterer as a whole can of course be of arbitrary
size.

Equation (10) can be written as a set of linear equations
that has to be solved for all components of E;, so if the
number of mesh elements N is large, the equations will take
a long time to be solved.

Furthermore, the field outside the scattering region V is

N
E(rout) = Eo(rom) + 2 Goj ! kéAejVjEﬁ (15)
j=1
with G,;=G(r,,,r;) and r,, ¢ V. It is clear from Eq. (15)
that a large N will have an impact on the calculation time of
fields.

For a layered background, the central equations are essen-
tially the same, although the permittivity of the background
is not a constant, but a piecewise constant function that only
depends on the coordinate perpendicular to the layers. Cal-
culating G;; for a layered background is in itself a lengthy
procedure, so it is even more important to optimize the mesh
for this case, to minimize the number of such calculations.

III. ALGORITHM

TEMA assumes that we have a certain matrix M that rep-
resents a regular mesh. The matrix can have dimension 2 or
3 depending on whether we want to simulate a two- or a
three-dimensional system. The cells of the matrix represent
the material present at the corresponding position of the
mesh. The value of the cell is the code for the material
present in that position: for instance, it may be set to zero if
the element is occupied—the code of element number j is
therefore related to the value of Ag; in Eq. (10). All mesh
elements that are occupied by the same material are repre-
sented by the same value in the matrix M. Notice that if a
cell is “empty,” it means in our case that the position is
occupied by a certain background material, which can indeed
be vacuum but could also be any other substance, because
our background may consist of layers of different materials.
By assigning a certain length d to the side of each mesh
element that M represents, we map M into a region of the
physical space. We then have a regular mesh that represents
the system we want to study.

Our goal now is to create a second mesh with a smaller
number of mesh elements, thereby speeding up further cal-
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culations, without reducing the precision of the result. We
will impose that all mesh elements we create have sides that
are multiples of d. This choice allows us to simplify the
algorithm, but it may also speed up the Green’s tensor
method, as will be discussed in Sec. IV D 2. For the sake of
simplicity, we will refer to a mesh element with side ad as a
“size a element.”

We must first decide which is the largest size for a mesh
element that we allow the algorithm to create. This size natu-
rally depends on the problem considered, and on the preci-
sion we would like to have for our calculations. We will
choose the side s of this largest element to be a multiple of d:
s=bd, b € N. Our algorithm must then be able to create mesh
elements with sizes from 1 to b. Larger sizes are preferred,
since they will reduce the total amount of mesh elements N,
but for near-field calculations, we must keep size-1 elements
at the surface of the particles to avoid precision loss, as we
will see later. We therefore need an automatic way to ensure
that the outer part of the structure contains only size-1 ele-
ments. For this purpose, let us now introduce the concept of
an extended mesh element. To each mesh element with size
h, we will assign a second element, centered at the same
position but with size h+f(h), where f(h)eN,Vh, and
f(1)=0. We will call this second element the “extended mesh
element.” Notice that, by definition, the size of the extended
element is greater than i for h>1. We will also call the
original mesh element with size & the “proper” mesh ele-
ment. Finally, we will refer to the collection of all points in
the extended mesh element and not in the proper mesh ele-
ment as the “edge” of the element of size A.

By means of this extended element, we can solve the
problem of automatically producing a variable-size mesh
with significantly less elements than the original mesh with
constant sizes. We scan throughout our space M in sequence,
and check if the extended mesh element we are considering
will fit at a given position. By fit, we mean that it must sit in
its entirety inside a subspace that is not empty, i.e., which is
occupied by some material different from the background. If
this is the case, we assign the corresponding proper mesh
element to that position, and mark the space it occupies as
full. Also, we cannot allow mesh elements to overlap, so the
proper mesh element must only occupy a space that previ-
ously was not full, that is, which was only occupied by size-1
elements. Notice that this procedure ensures that the external
part of any objects in our mesh contains only size-1 ele-
ments. This is depicted in Fig. 1.

It is worth noting that the method we use to scan through
M is not unambiguously defined. Let us say we begin at
point (1, 1, 1). We may try to fit the extended element there
by taking (I, 1, 1) to be any of the eight corners of the
extended element, or its center, for instance. Additionally, if
the element does not fit, we can proceed to point (2, 1, 1), or
point (1, 2, 1), or (1, 1, 2), and so on. However, all these
options will yield very similar results. Only for the case of
symmetric objects it will be favorable to choose a specific
way of re-meshing; we will further discuss this point in Sec.
IVD4.

Since we want the algorithm to be general, it must also
handle the case when several materials are present in our
system. As mesh elements have to consist of only one mate-
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B Original mesh
B Proper element
7 Edge

FIG. 1. (Color online) Comparison between proper and ex-
tended mesh elements. A proper mesh element with no edge (top
black square) can sit at the surface of the object. By introducing an
edge, the proper mesh element (bottom black square) is forced to sit
at a distance from the surface.

rial, we must also add the condition that the whole space
occupied by a proper element must contain only one kind of
material. This is not necessary for the whole extended ele-
ment, so the edge can actually consist of different materials,
as long as none of them is background.

Once we decide the largest size b and the individual sizes
of the extended elements, the algorithm already has enough
information to create the optimized mesh. It will start with
the largest size b and try to fit the extended element wherever
possible. Then it will do the same for sizes b—1, b-2...,
down to 2. Each successfully positioned mesh element of
size a will reduce the total number of mesh elements N by
aP—1, where D is the dimension of the space M, so it is
more favorable to start with the largest elements. This is why
we call this a top-down algorithm.

Notice, however, that we cannot assert that taking b to be
the largest mesh size will produce the best results in terms of
minimizing N, as this critically depends on the geometry of
our system. In order to further improve our mesh, we should
repeat the whole process, but changing the largest allowed
size from b to b—1, b-2..., down to 2. We should store the
corresponding numbers of mesh elements Ny, N,_;,..., N,
and choose the one that yields the smallest number. The last
step is to output the mesh on a file that can be read by the
GT/LGT program.

IV. RESULTS AND DISCUSSION
A. TEMA example

Figure 2 presents an example of a three-dimensional mesh
created by TEMA. The original mesh represents a sphere of
45 mesh units in diameter, with an irregular internal void
built up by three overlapping vacuum spheres. The maxi-
mum allowed size for the mesh elements is initially taken to
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FIG. 2. (Color online) Example of a mesh created by TEMA. A
diameter 45 sphere with an asymmetric void is re-meshed with
mesh sizes of 13 and below. The figure shows a cut through the
center of the sphere. The mesh elements are color-coded according
to their sizes.

be b=15. All elements are required to have a size-1 edge.
The algorithm found an optimal maximum size of b=13. The
figure represents a cut through the center of the object. By
applying TEMA, the total number of elements goes from N
=46 588 for the original mesh to N=18 113, making it pos-
sible to calculate the same sample with just 40% of the initial
mesh elements. If a maximum size of 13 is too large for our
purposes, decreasing b does not drastically increase the total
amount of mesh elements. For example, a maximum size of
b=7 yields N=18 212, and b=3 leads to N=19 753.

B. Calculation times

Figure 3 shows a comparison between LGT calculation
times with and without TEMA. The samples considered are
truncated spheres of different sizes, in a two-layer system.
TEMA has been applied with a constant edge of size 1 for all
elements, and taking the largest allowed element to be r—2,

40000 ——— T T T
Original = -
TEMA =
Orioinal m &
30000 L TEMA fit —— ,
o 20000 " 1
E .-“-.
[ o~
10000 | = .

4000 8000

0 2000
Number of mesh elements

8000 10000

FIG. 3. Comparison between calculation times for the original,
regular mesh, and the mesh created by TEMA. The two sets of
calculation times are fitted to a quadratic function t=AN?, where N
is the number of mesh elements in the original mesh.
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TABLE I. Calculation times with the original mesh (£,,;4,,;) and
with the TEMA mesh (t7zy4), according to the fitting functions
from Fig. 3. N is the number of elements in the original mesh.

N Loriginal ITEMA
103 378 s 89 s
10* 10.5 h 25h
10° 43.7 days 10.3 days

where r is the radius of the sphere. All calculations have
been carried out on a Pentium 4 3.6-GHz computer. Our
LGT program is a FORTRAN code which uses a variant of the
bi-conjugate gradient method, the BiCGstab(2) method
[24,25], to solve the linear system of equations that yields
the fields inside each mesh element.

We can extrapolate the calculation times by fitting the two
sets of results to a quadratic function, /=AN?. This gives us
an approximation to the calculation times with and without
TEMA. The resulting A coefficient is A=(3.78+0.12)
X 10 s for the original mesh and A=(8.9+0.3) X 1073 s for
the TEMA mesh.

Table I presents a comparison between times for different
values of N. As the results indicate, GT calculations using
the TEMA mesh are about four times faster than those using
a regular mesh. The time required to run the TEMA program
itself is negligible compared to the rest of the calculations:
the re-meshing has been carried out in all cases in 5 s or less.

C. Precision

It is also necessary to make sure that the precision is not
noticeably affected when utilizing the TEMA mesh. Figure 4
shows an example of the same near-field enhancement cal-
culation with the original mesh and with the TEMA mesh.
We have taken a gold structure shaped like a crescent moon
with a diameter of 24 nm and a height of 12 nm, embedded
in vacuum. The scatterer has been created by starting with a
gold cylinder of 26 nm diameter and 12 nm height with its
base centered at the origin, and then putting a “negative” or
vacuum cylinder of equal dimensions but with the base cen-
tered at (0,—7,0) nm. The resulting shape is a crescent-like
structure, but due to the mesh discretization, it presents a
sharp edge on each side, and is slightly smaller than the
original cylinders. The presence of sharp edges is ideal to
test the precision of TEMA, since the electric field is con-
centrated around them. We look at the field enhancement in a
plane located 2 nm below the base of the crescent-like struc-
ture.

The near-field presents few differences between the
TEMA calculations and the original mesh. The most appar-
ent one is a quantitatively different enhancement at the hot
spots, but a numerical comparison between the two plots
reveals that the maximum relative error for the field magni-
tude is only 3.8%. This is consistent with our requirement
that the meshing method should not significantly affect the
precision. The differences between the two plots around the
curved black lines are mostly due to the different scale of the
two graphs.
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Figure 4(c), is the same near-field plot, but with a mesh
with edge sizes equal to zero in all cases. It is apparent from
the graph that the result is quite different from the original
plot. This behavior demonstrates the need for mesh edges, as
we have discussed previously.

For a general case, the quality and accuracy of the results
will, of course, depend both on the largest size allowed for
the TEMA elements and on the desired precision, so there is
no general recipe to decide when the TEMA mesh is satis-
factory. On the other hand, TEMA is made in such a way that
it is difficult to reach a point where the mesh created by the
algorithm yields results that do not resemble the ones ob-
tained with a regular mesh. Even if we allow very large
elements to be created, the algorithm will surely find that a
smaller value for the largest element gives a more optimized
mesh, as placing a very large element inside a particle leaves
little room for the rest. Our tests indicate that TEMA meshes
rarely contain less than 40% of the original elements, except
when the particles are close to being parellelepipeds, but in
that case the TEMA mesh still gives good results. As a rule
of thumb, the maximum error for the field magnitude with an
arbitrary TEMA mesh is of about 5%, which should be ac-
ceptable for most calculations. There is an exception to this
small error when calculating local fields that we will discuss
and give a solution to in Sec. IVD 5

Further improvement in the precision of TEMA calcula-
tions can be achieved by utilizing the symmetry of the
sample, as we will show in Sec. IV D 4

D. Other improvements

1. Convex particles

In its general form, this is already a fast algorithm, but its
speed can be improved when we are considering convex par-
ticles. If the system contains no concavities, and the distance
between surfaces is larger than the largest edge of the ex-
tended elements, then a necessary and sufficient condition
for any extended element to fit inside the system (in the
sense discussed above) is that its vertexes be in a position
occupied by a size-1 element. That reduces the amount of
tests to see if an extended element is in an allowed position
to just four (in two dimensions) or eight (in three dimen-
sions), thereby speeding up the algorithm. Notice, however,
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FIG. 4. (Color online) GT calculations of a
“crescent moon”-like gold structure in vacuum.
The wavelength is A=600 nm, and the gold di-
electric constant is €=—9.42+1.50i. (a) Field en-
hancement, 2 nm below the surface, with the
original mesh. (b) Same plot, but with the TEMA
mesh. (c) Variable size mesh plot with no mesh
edges. Notice the big difference between this plot
and the previous two.
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that once the edge is found to be in an allowed location, we
still have to go through the tests for the proper element.

2. GT symmetries

One key optimization lies in the GT method itself. Since
we have taken care in positioning the centers of the mesh
elements on a regular matrix of points, we can greatly de-
crease the amount of calculations involved in solving the GT
linear system by means of the symmetries of the dyadic
Green’s tensor.

Let us first concentrate on the homogeneous case. Be-
cause of the symmetry of the problem (rotational and trans-
lational invariance in all three coordinates), we may calculate
the individual Green’s tensor for two given mesh elements,
G(r;,r)), through the Green’s tensor of their distance:

G(r,r)=M"'G(d,0)M. (16)

Here, d=(|ri—rj ,0,0) and M is the rotation matrix that
brings the d vector parallel to r;—r;.

Equation (16) means that we may reconstruct the whole
GT matrix from the distances between elements and the
angles that all combinations of r;—r; make with the +x axis.
As the elements all lie on a regular matrix of points, the total
number of different distances between points, D, should be
much smaller than the number of possible combinations of
two elements, N2. We can first scan through all combinations
of mesh positions r; and r; and create a look-up table of their
respective distances d;, i=1,...,D. The next step is to cal-
culate the D different Green’s tensors G;(d;,0) for all pos-
sible distances, and store them. Finally, we can reconstruct
the dyadic Green’s tensor G(r,r’) for any two mesh ele-
ments by means of Eq. (16) and our look-up table.

This way of proceeding will prove particularly useful in
the LGT case. While it is fast and easy to obtain the dyadic
Green’s tensor of two given mesh elements in homogeneous
media, the calculations in the layered case are much more
time-consuming. Therefore if we first make D calculations,
we can then get any of the individual Green’s tensors by
means of two simple matrix multiplications. As mentioned
before, D<<N? in most practical cases, thus the calculation
time decreases significantly. Moreover, it is not always pos-
sible to store N> 3X3 complex matrices in the computer
memory if N? is a very large number, but it may be possible
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to store D matrices instead. This is very useful if we solve
the large 3N X 3N matrix defined by the system in Eq. (10)
via iterative methods, because we can store all information
we need in memory, instead of having to calculate over and
over the individual matrices on-the-fly with each iteration.

In the case of the layered Green’s tensor, there is no
longer full rotational and translational invariance due to the
layered background. We may still simplify the problem,
though, by utilizing the remaining symmetries of the system.
Let us assume that the layers are parallel to the XY plane.
Then, the system still possesses full translational symmetry
in the X and Y directions, and rotational symmetry around
the Z axis. Given two elements at r;=(x,y,z) and r;
=(x",y’,z"), respectively, we can reconstruct the Green’s
tensor as follows:

G(r,r)=M"'G(d,0,z;0,0,z")M. (17)

This time, d=[(x—x")*+(y—y’)*]""? because it is only in
the XY plane that we can utilize the symmetry. Obviously, M
will also be just a rotation in the XY plane.

For the layered case, the look-up table must include sepa-
rate entries, not only for each value of d, but for each com-
bination of d, z, and z’. The total number D of different 3
X 3 matrices to store will be larger than for the homogeneous
case, but still significantly smaller than N°. As an example,
for a sphere of diameter equal to 45 mesh elements, the
TEMA mesh with edge 1 yields N=15 162 elements. To
solve the system, we need N?=2.3 % 10% matrices. The LGT
look-up table, however, consists of D=2,311,599 elements,
which is two orders of magnitude less. The typical time nec-
essary to calculate a two-layer LGT dyadic matrix is t;5r
~ 1 ms. To prepare the full LGT matrix will thus take about
one hour using the look-up table elements, and about 100 h
without. Notice that this way of proceeding will speed up the
solving of the system of equations by more than two orders
of magnitude, because the matrices can be stored in memory
and will not be have to be constructed every time from
scratch. Thus the conjugate gradient iterations become much
faster.

The extra time needed for the creation of the look-up table
itself, that is, finding all different combinations of (d,z,z")
and writing the necessary information to a file, is of the order
of a minute or less in all cases considered here (N<10°),
therefore negligible in comparison to the total gains in time.

All times reported in Sec. IV B are obtained with this
symmetry algorithm implemented into our LGT program.

3. Odd-sized mesh

GT symmetries are very useful in order to decrease the
calculation time. However, notice that by allowing our mesh
sizes to be both odd and even, the centers of the mesh will in
general lie on a matrix of points of the form (k/2,1/2,m/2),
k,l,m e Z. This increases the amount of unique distances
between elements, thus also increasing the number of ele-
ments in the look-up table, D.

If we restrict our proper mesh elements to have odd sizes,
the mesh centers will lie on the same regular matrix as the
original, size 1 mesh: (k,I,m), k,l,m € 7. For the example
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mentioned in Sec. IV A of a 45-diameter sphere, D goes
down to 888 898, while N increases to 21 972.

For near-field plots, NV is a crucial value because we must
create N LGT dyadics for each point in the plot. That can
easily amount to 10*N LGT calculations or more. However,
if we just need far-field cross sections, the number of dyadics
needed is N for each direction considered, so it will be just N
for forward or backward scattering, and pN for scattering in
all directions, where p is the number of points in which we
discretize the integration in solid angle (a typical value of p
in DDA calculations is p=200). Thus it may be useful to
restrict the mesh sizes to odd numbers if we are only inter-
ested in far-field calculations.

4. Symmetric and nearly symmetric objects

If the objects we want to study have a certain symmetry,
say they are spherical, we can use this information to im-
prove the precision. The algorithm in its general form does
not know where the centers of the objects are located. It
starts at one edge of the space to re-mesh and sweeps
through all points in sequence: for example, first looking at
all points along x, then increasing y one step and looking
again through all x, and so on. This will in general produce
asymmetric meshes even for symmetric objects. If we know,
however, that the object we consider is a sphere, we can
force the algorithm to start re-meshing the object from the
center outwards. By utilizing this method, larger elements
will preferentially be located in the inner part of the sphere;
the resulting mesh will be more symmetrical and will repre-
sent the original object better, leading to a smaller error. The
number of elements will still be optimized.

In general, we can improve the precision at the expense of
a little speed for any type of object, by changing the indi-
vidual edge sizes. If we choose a larger edge size for larger
elements, they will only be located where there is more space
available, thus the inner part of the object. This is particu-
larly useful for those objects that are nearly symmetrical, like
ellipsoids, spheres with a void, etc., where the full symmetry
cannot be applied directly.

Figure 5 shows the same sample discussed in Sec. IV A,
but with variable size edges according to the function f(h)
=int(h/2) (cf. Sec. III). Notice how the maximum mesh size
goes down to 7, and how only the smaller elements are close
to the surfaces. This is a good idea if we need a higher
precision for near-field calculations. The price to pay is that
the higher constraints make it more difficult to place the
elements. Therefore the total number of elements will go up.
In this case, it has increased from N=18 113 to N=19 558.

5. Near-field plots

One last improvement that we will present here is the
following: for near-field plots, if we want to visualize the
fields inside the mesh elements, having too big elements may
hamper the results, since, as we mentioned, the field inside
the mesh elements is taken to be constant. However, we may
force the algorithm to keep size 1 mesh elements on the
plane or planes we want to visualize, while re-meshing the
rest of the system. Therefore we may add a condition to our
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FIG. 5. (Color online) The same sample as in Fig. 2, this time
with variable edges so that larger mesh elements are placed in the
inner part of the sample.

algorithm, which states that only the edges can intersect the
visualization planes, not the proper elements. This will again
ensure an automatic re-meshing of the system while keeping
size-1 elements all over the visualization planes.

The criteria for an acceptable result will vary depending
on the specific needs of the calculations we are performing.
If we need high precision, it may be necessary to decrease
the size of the smallest element (that is, to increase the num-
ber of elements in the original mesh) before applying TEMA.
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V. CONCLUSIONS

We have presented the top-down extended mesh algo-
rithm (TEMA) that takes a regular mesh and automatically
creates a second mesh with variable size elements. This sec-
ond mesh is optimized to be used in the Green’s tensor
method. We have shown that the TEMA mesh leads to faster
Green’s tensor calculations, typically about four times faster
for many practical problems. We have also shown that the
precision achieved by the calculations is not significantly
decreased by the variable size mesh: typical field magnitude
errors are 5% or below.

Since TEMA creates regularly spaced meshes, further
gains in speed can be achieved by utilizing the symmetries of
the tensor. We have seen that this step also greatly reduces
the needs for memory storage, typically by two orders of
magnitude.

Finally, we have also shown how to adapt TEMA to spe-
cific problems: near-field plots, far-field cross sections, sym-
metric or quasisymmetric systems, and convex objects. The
algorithm itself and its optional improvements are fast and
simple to implement, and the gains in calculation speed
make it possible to run large Green’s tensor problems in a
reasonable amount of time, even on single-processor com-
puters.
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